- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
41
- Author / Contributor
- Filter by Author / Creator
-
-
Kleptsyn, Victor (5)
-
Gorodetski, Anton (3)
-
Gorin, Vadim (1)
-
Quintino, Fernando (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
null (2)
-
Gusein-Zade, S (1)
-
Ilyashenko, Yu (1)
-
Tsfasman, M (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider discrete Schrödinger operators on with bounded random but not necessarily identically distributed values of the potential. We prove spectral localization (with exponentially decaying eigenfunctions) as well as dynamical localization for this model. An important ingredient of the proof is a non-stationary version of the parametric Furstenberg Theorem on random matrix products, which is also of independent interest.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Gorodetski, Anton; Kleptsyn, Victor (, Moscow Mathematical Journal)Ilyashenko, Yu; Tsfasman, M; Gusein-Zade, S (Ed.)We prove a version of pointwise ergodic theorem for non- stationary random dynamical systems. Also, we discuss two specificc examples where the result is applicable: non-stationary iterated function systems and non-stationary random matrix products.more » « less
-
Gorin, Vadim; Kleptsyn, Victor (, Journal of the European Mathematical Society)
-
Gorodetski, Anton; Kleptsyn, Victor (, Advances in Mathematics)null (Ed.)
-
Kleptsyn, Victor; Quintino, Fernando (, Potential Analysis)null (Ed.)
An official website of the United States government
